Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Vanessa Avila and Edward R. T. Tiekink*

Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA

Correspondence e-mail:
edward.tiekink@utsa.edu

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.044$
$w R$ factor $=0.109$
Data-to-parameter ratio $=16.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[bis(O,O'-diisopropyl dithio-phosphato- $\kappa^{2} S, S^{\prime}$)zinc(II)]- μ-1,2-bis(3-pyridylmethylene)hydrazine $\left.-\kappa^{2} N: N^{\prime}\right]$

In the polymeric title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{PS}_{2}\right)_{2}-\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\right]_{n}$, the Zn atom lies on a centre of inversion and the bridging diimine ligand is disposed about another centre of inversion. The Zn atom is in an octahedral geometry defined by a trans- $\mathrm{N}_{2} \mathrm{~S}_{4}$ donor set. The polymer topology is that of a step-ladder.

Comment

Structures (Chen et al., 2005; Lai \& Tiekink, 2006) related to the title compound, (I), have been investigated as a part of an ongoing study of the nature of polymer formation in zinc and cadmium dithiophosphates [${ }^{-} \mathrm{S}_{2} \mathrm{P}(\mathrm{OR})_{2}$; Lai et al., 2004; Lai \& Tiekink, 2004; Chen et al., 2006]. In (I), the Zn atom exists within a trans $-\mathrm{N}_{2} \mathrm{~S}_{4}$ donor set that defines an approximately octahedral geometry. The Zn atom is situated on a centre of inversion and the bis(4-pyridylmethylene)hydrazine is disposed about another inversion centre. The coordination geometry is distorted octahedral defined by a trans $-\mathrm{N}_{2} \mathrm{~S}_{4}$ donor set (Fig. 1).

(I)

The dithiophosphate ligand coordinates in a symmetric fashion and this coordination mode is reflected in the near equivalence of $\mathrm{P}-\mathrm{S}$ bond distances and of the $\mathrm{Zn}-\mathrm{S}-\mathrm{P}$ bond angles (Table 1). A view of the polymer in (I) is shown in Fig. 2. The polymer topology, consistent with that found for the isomorphous Cd analogue (Lai \& Tiekink, 2006), is that of a step-ladder.

Experimental

Compound (I) was prepared by refluxing the parent $\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{P}(\mathrm{OiPr})_{2}\right]_{2}$ compound with bis(3-pyridylmethylene)hydrazine (Aldrich)

Received 17 November 2006
Accepted 21 November 2006

Figure 1
Part of the polymeric structure of (I), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $1-x,-y, 2-z$; (ii) $-x,-y, 1-z$.]

Figure 2
Polymer topology in (I). Colour code: Zn brown, S yellow, P pink, O red, N blue, C grey and H green.
according to a literature procedure (Lai \& Tiekink, 2004). Yellow crystals were isolated by the slow evaporation of an 2-propanol solution of the compound (m.p. 381-384 K). IR (KBr disk): $v(\mathrm{C}=\mathrm{N})$ $1464(w), v(\mathrm{C}-\mathrm{O}) 1101(w), v(\mathrm{P}-\mathrm{O}) 960(s), v(\mathrm{P}-\mathrm{S})_{\text {asymm }} 646(s)$ cm^{-1}.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{PS}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\right]$	$Z=2$
$M_{r}=702.13$	$D_{x}=1.434 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=11.809(3) \AA$	$\mu=1.15 \mathrm{~mm}^{-1}$
$b=11.243(3) \AA$	$T=150(2) \mathrm{K}$
$c=12.933(3) \AA$	Plate, yellow
$\beta=108.712(5)^{\circ}$	$0.30 \times 0.25 \times 0.08 \mathrm{~mm}$
$V=1626.3(7) \AA^{3}$	

Data collection

AFC12K/SATURN724
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.722, T_{\text {max }}=1$
(expected range $=0.659-0.912)$
34154 measured reflections
2864 independent reflections
2793 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0527 P)^{2} \\
&+4.0311 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{Zn}-\mathrm{S} 1$	$2.5420(9)$	$\mathrm{S} 2-\mathrm{P} 1$	$1.9792(11)$
$\mathrm{Zn}-\mathrm{S} 2$	$2.5540(9)$	$\mathrm{N} 2-\mathrm{N} 2^{\mathrm{i}}$	$1.412(5)$
$\mathrm{Zn}-\mathrm{N} 1$	$2.228(2)$	$\mathrm{N} 2-\mathrm{C} 12$	$1.268(4)$
$\mathrm{S} 1-\mathrm{P} 1$	$2.0013(11)$		
$\mathrm{S} 1-\mathrm{Zn}-\mathrm{S} 2$	$81.23(3)$	$\mathrm{S} 2-\mathrm{Zn}-\mathrm{N} 1$	$92.20(7)$
$\mathrm{S} 1-\mathrm{Zn}-\mathrm{N} 1$	$89.65(7)$	$\mathrm{S} 2-\mathrm{Zn}-\mathrm{N} 1^{\mathrm{ii}}$	$87.80(7)$
$\mathrm{S} 1-\mathrm{Zn}-\mathrm{S} 2^{\text {ii }}$	$98.77(3)$	$\mathrm{Zn}-\mathrm{S} 1-\mathrm{P} 1$	$82.50(3)$
$\mathrm{S} 1^{\mathrm{ii}}-\mathrm{Zn}-\mathrm{N} 1$	$90.35(7)$	$\mathrm{Zn}-\mathrm{S} 2-\mathrm{P} 1$	$82.61(4)$

Symmetry codes: (i) $-x+1,-y,-z+2$; (ii) $-x,-y,-z+1$.
H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}($ methyl C$)$ or $1.2 U_{\text {eq }}(\mathrm{C})$. The highest peak is located $1.36 \AA$ from atom C4.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Cheminova is thanked for the gift of the dithiophosphate ligand used in this study.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Brandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany.
Chen, D., Lai, C. S. \& Tiekink, E. R. T. (2005). Acta Cryst. E61, m2052-m2054.
Chen, D., Lai, C. S. \& Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lai, C. S., Liu, S. \& Tiekink, E. R. T. (2004). CrystEngComm, 6, 221-226.
Lai, C. S. \& Tiekink, E. R. T. (2004). CrystEngComm, 6, 593-605.
Lai, C. S. \& Tiekink, E. R. T. (2006). Z. Kristallogr. 221, 288-293.
Rigaku (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

